top of page

# GROUP THEORY COMPLETE THEORY WITH IMPORTANT QUESTIONS AND ANALYSIS

Group theory, in modern algebra, the study of groups, which are systems consisting of a set of elements and a binary operation that can be applied to two elements of the set, which together satisfy certain axioms. These require that the group be closed under the operation (the combination of any two elements produces another element of the group), that it obey the associative law, that it contain an identity element (which, combined with any other element, leaves the latter unchanged), and that each element have an inverse (which combines with an element to produce the identity element). If the group also satisfies the commutative law, it is called a commutative, or abelian, group.

The set of integers under addition, where the identity element is 0 and the inverse is the negative of a positive number or vice versa, is an abelian group. Groups are vital to modern algebra; their basic structure can be found in many mathematical phenomena. Groups can be found in geometry, representing phenomena such as symmetry and certain types of transformations. Group theory has applications in physics, chemistry, and computer science, and even puzzles like Rubikâ€™s Cube can be represented using group theory.

## Group Theory Addition Modulo 3, Proving Z3 is a group under Addition Modulo 3 | PART 3

Did you like our solutions?

• yes, i like it

• yes, i really like it

0 views