top of page

ISI MSQE 2022 SOLUTION SUBJECTIVE ECONOMICS








Consider an agent living for two periods, 1 and 2. The agent maximizes lifetime utility, given by: 1 𝑈 (𝐶1) +1/(1 + 𝜌) 𝑈 (𝐶2), where 𝜌 > 0 captures the time preference, while 𝐶1 and 𝐶2 are the agent’s consumption in period 1 and period 2, respectively. The agent supplies one unit of labor inelastically in period 1, earning a wage 𝑤. A portion of this wage is consumed in period 1 and rest is saved (denoted 𝑠). In period 2 the agent does not work, but receives interest income on the savings. Principal plus the interest income on savings goes to finance period 2 consumption. Thus, 𝐶1 + 𝑠 = 𝑤 and 𝐶2 = (1 + 𝑟)𝑠, where 𝑟 is the rate of interest. Assume that the per period utility function can be represented by (and only by) any positive linear transformation of the form U (C ) = [C^(1-Ѳ)]-1/(1-Ѳ) WHERE 0<Ѳ<1



(a) Demonstrate, deriving your claim, how optimal savings, 𝑠, would respond to changes in 𝑟 .



(b) Now suppose, initially, 𝑟 = 𝜌. What happens to optimal savings, 𝑠, if 𝑟 and 𝜌 increase by the same amount (so that the condition 𝑟 = 𝜌 continues to hold)?

ANSWER (a) To find the optimal savings, we need to maximize the agent's lifetime utility subject to the budget constraint. The budget constraint can be rewritten as 𝑠 = 𝑤 − 𝐶1, and the lifetime utility function can be rewritten as: U = [𝐶1^(1-Ѳ)]/(1-Ѳ) + 1/(1+𝜌) * [ (1 + 𝑟)𝑠 )^(1-Ѳ) ]/(1-Ѳ) Substituting 𝑠 = 𝑤 − 𝐶1 into the lifetime utility function yields: U = [𝐶1^(1-Ѳ)]/(1-Ѳ) + 1/(1+𝜌) * [ (1 + 𝑟)(𝑤−𝐶1) ]^(1-Ѳ)/(1-Ѳ) Taking the derivative of U with respect to 𝐶1 and setting it equal to zero gives the first-order condition: (1-Ѳ)𝐶1^(-Ѳ) - 1/(1+𝜌) * (1-Ѳ) * [(1+𝑟)(𝑤-𝐶1)]^(-Ѳ) * (1+𝑟) = 0 Simplifying and solving for 𝐶1 yields: 𝐶1 = [ (1+𝑟)/(1+𝑟+𝜌) ] * 𝑤 Therefore, optimal savings are given by: 𝑠 = 𝑤 − 𝐶1 = [ 𝜌/(1+𝑟+𝜌) ] * 𝑤 The optimal savings are decreasing in 𝑟. To see why, note that an increase in 𝑟 makes saving more attractive because the agent earns a higher return on savings. As a result, the agent would reduce current consumption in period 1 and save more for period 2.



(b) If 𝑟 and 𝜌 both increase by the same amount, so that 𝑟 = 𝜌 + 𝛿 for some positive 𝛿, then optimal savings would also increase. To see why, note that the increase in 𝑟 increases the return on savings, making saving more attractive. However, the increase in 𝜌 reduces the weight placed on future consumption, making current consumption relatively more attractive. The net effect depends on the relative magnitudes of the two effects. If the increase in 𝑟 is larger than the increase in 𝜌, then the agent would save more. If the increase in 𝑟 is smaller than the increase in 𝜌, then the agent would save less. If the increases are equal, then the optimal savings would increase proportionally.

 
 
 

5件のコメント


MZKO QPFQ
MZKO QPFQ
2024年12月28日

代发外链 提权重点击找我;

google留痕 google留痕;

Fortune Tiger Fortune Tiger;

Fortune Tiger Fortune Tiger;

Fortune Tiger Slots Fortune…

站群/ 站群;

万事达U卡办理 万事达U卡办理;

VISA银联U卡办理 VISA银联U卡办理;

U卡办理 U卡办理;

万事达U卡办理 万事达U卡办理;

VISA银联U卡办理 VISA银联U卡办理;

U卡办理 U卡办理;

온라인 슬롯 온라인 슬롯;

온라인카지노 온라인카지노;

바카라사이트 바카라사이트;

EPS Machine EPS Machine;

EPS Machine EPS Machine;

EPS Machine EPS Machine;

EPS Machine EPS Machine;

いいね!

MCRW YDWB
MCRW YDWB
2024年12月19日
いいね!

MCRW YDWB
MCRW YDWB
2024年12月18日
いいね!

MZKO QPFQ
MZKO QPFQ
2024年12月08日

google 优化 seo技术+jingcheng-seo.com+秒收录;

谷歌seo优化 谷歌SEO优化+外链发布+权重提升;

Fortune Tiger Fortune Tiger;

Fortune Tiger Fortune Tiger;

Fortune Tiger Fortune Tiger;

Fortune Tiger Slots Fortune…

gamesimes gamesimes;

站群/ 站群

03topgame 03topgame

betwin betwin;

777 777;

slots slots;

Fortune Tiger Fortune Tiger;

いいね!

XVFC OKBG
XVFC OKBG
2024年11月14日

谷歌seo优化 谷歌SEO优化;

Fortune Tiger Fortune Tiger;

Fortune Tiger Fortune Tiger;

Fortune Tiger Slots Fortune…

Fortune Tiger Fortune Tiger;

Fortune Tiger Fortune Tiger;

Fortune Tiger Fortune Tiger;

Fortune Tiger Fortune Tiger;

Fortune Tiger Fortune Tiger;

Fortune Tiger Fortune Tiger;

いいね!
Featured Posts
Recent Posts
Archive
Search By Tags
Follow Us
  • Facebook Basic Square
  • Twitter Basic Square
  • Google+ Basic Square
bottom of page