PMB
 2019

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=0
$$

Show that f is a bounded function on \mathbb{R} and attains a maximum or a minimum. Give an example to show that it attains a maximum but not a minimum.
2. Let $g:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $g(1)=0$. Show that

$$
\sup _{x \in[0,1]}\left|x^{n} g(x)\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice continuously differentiable function and suppose $f(0)=f^{\prime}(0)=0$. If $\left|f^{\prime \prime}(x)\right| \leq 1$ for all $x \in \mathbb{R}$, then prove that $|f(x)| \leq 1 / 2$ for all $x \in[-1,1]$.
4. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function defined by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{2} y^{3}}{x^{4}+y^{6}}, & \text { if } x \neq 0, y \in \mathbb{R} \\
0, & \text { if } x=0, y \in \mathbb{R}
\end{array}\right.
$$

(a) Find all $(a, b) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ such that f has a nonzero directional derivative at $(0,0)$ with respect to the direction (a, b).
(b) Is f continuous at $(0,0)$? Justify your answer.
5. Let C be a subset of a compact metric space (X, d). Assume that for every continuous function $h: X \rightarrow \mathbb{R}$, the restriction of h to C attains a maximum on C. Prove that C is compact.

Please turn over

6. Let G be a non-abelian group of order $p q$, where $p<q$ are primes.
(a) How many elements of G have order q ?
(b) How many elements of G have order p ?
7. Prove or disprove the following statement: The ring $\mathbb{Q}[X] /\left(X^{4}-1\right)$ is isomorphic to a product of fields.
8. Let M be a symmetric matrix with real entries such that $M^{k}=0$ for some $k \in \mathbb{N}$. Show that $M=0$.
9. Suppose A and B are two $n \times n$ matrices with real entries such that the sum of their ranks is strictly less than n. Show that there exists a nonzero column vector $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=B \mathbf{x}=\mathbf{0}$.
10. Suppose there are n persons in a party. Every pair of persons meet each other with probability $p \in(0,1)$ independently of the other pairs. Let $N(i)$ be the number of people the $i^{\text {th }}$ person meets in the party. For all $i, j \in\{1,2, \ldots, n\}$ with $i \neq j$ and for all $k, l \in\{1,2, \ldots, n-2\}$, show that

$$
\begin{aligned}
P[N(i)=k, N(j)=l]= & \binom{n-2}{k-1}\binom{n-2}{l-1} p^{k+l-1}(1-p)^{2 n-k-l-2} \\
& +\binom{n-2}{k}\binom{n-2}{l} p^{k+l}(1-p)^{2 n-k-l-3}
\end{aligned}
$$

