MS(QMS)
 2019

1. (a) Find the value of $\lim _{n \rightarrow \infty}\left(\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots . .+\frac{1}{3 n}\right)$.
(b) Show that every square matrix is uniquely expressible as the sum of a symmetric and a skew symmetric matrix. $\quad[7+8=15]$
2. (a) Let x be a positive real number. Then show that for any x, $x^{2}+\pi^{2}+x^{2 \pi} \geq x^{\pi}(\pi+x)+x \pi$.
(b) Solve the differential equation $\frac{d y}{d x}=x-x y . \quad[10+5=15]$
3. (a) Let x be chosen at random from the interval $(0,1)$. What is the probability that $\left[\log _{10} 4 x\right]-\left[\log _{10} x\right]=0$? Here $[x]$ denotes the greatest integer that is less than or equal to x.
(b) The graph of $2 x^{2}+x y+3 y^{2}-11 x-20 y+40=0$ is an ellipse in the first quadrant of the $x y$-plane. Let a and b be the maximum and minimum values of y / x over all the points (x, y) on the ellipse. Find the value of $a+b$.
$[8+7=15]$
4. (a) Let $f(x)$ be the determinant of the following matrix:

$$
\left[\begin{array}{ccc}
a^{2} x+1 & \left(b^{2}-1\right) x & \left(c^{2}-1\right) x \\
\left(a^{2}-1\right) x & b^{2} x+1 & \left(c^{2}-1\right) x \\
\left(a^{2}-1\right) x & \left(b^{2}-1\right) x & c^{2} x+1
\end{array}\right] .
$$

If $a^{2}+b^{2}+c^{2}=2$, then what is the degree of the polynomial $f(x)$?
(b) Let $g(x)=x^{6}-x^{5}+x^{2}-x+3,-\infty<x<\infty$. Show that $g(x)>0$ for all x.
$[7+8=15]$
5. (a) Evaluate $\iint \sqrt{\frac{a^{2} b^{2}-b^{2} x^{2}-a^{2} y^{2}}{a^{2} b^{2}+b^{2} x^{2}+a^{2} y^{2}}} d x d y$ over the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(b) Let $f(x)$ and $g(x)$ are differentiable functions for $0 \leq x \leq 1$ such that $f(0)=2, g(0)=0, f(1)=6$ and $g(1)=2$. Then show that there exists c satisfying $0<c<1$ and $f^{\prime}(c)=2 g^{\prime}(c)$.

$$
[9+6=15]
$$

6. (a) Let $\left\{x_{n}: n=0,1,2, \ldots\right\}$ be a sequence of real numbers such that $x_{n+1}=\lambda x_{n}+(1-\lambda) x_{n-1}$ for $n \geq 1$ and for some $\lambda, 0<\lambda<1$.
i. Show that $x_{n}=x_{0}+\left(x_{1}-x_{0}\right) \sum_{k=0}^{n-1}(\lambda-1)^{k}$
ii. Hence or otherwise show that x_{n} converges as $n \rightarrow \infty$ and find the limit.
(b) Show that the height of the right circular cylinder of maximum volume that can be inscribed in a given right circular cone of height h is $\frac{h}{3}$.

$$
[(6+3)+6=15]
$$

7. (a) Let $f(x)=\left|\begin{array}{ccc}\sec x & \cos x & \sec ^{2} x+\cot x \operatorname{cosec}^{2} x \\ \cos ^{2} x & \cos ^{2} x & \operatorname{cosec}^{2} x \\ 1 & \cos ^{2} x & \operatorname{cosec}^{2} x\end{array}\right|$. Then show that $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} f(x) d x=1-\frac{1}{\sqrt{2}}-\frac{\pi}{8}-\frac{1}{2} \log 2$.
(b) Let $f(x)=x^{2}+2 b x+2 c^{2}$ and $g(x)=-x^{2}-2 c x+b^{2}$ be such that $\min f(x)>\max g(x)$. Show that $|c|>\sqrt{2}|b| . \quad[8+7=15]$
8. (a) A piece of cheese is located at $(12,10)$ in a co-ordinate plane. A mouse is at $(4,-2)$ and is running up the line $y=-5 x+18$. At the point (a, b) the mouse starts getting farther from the cheese rather than closer to it. What is $a+b$?
(b) Let $S_{1}=\left\{(x, y) \mid \log _{10}\left(1+x^{2}+y^{2}\right) \leq 1+\log _{10}(x+y)\right\}$ and $S_{2}=\left\{(x, y) \mid \log _{10}\left(2+x^{2}+y^{2}\right) \leq 2+\log _{10}(x+y)\right\}$. What is the ratio of the area of S_{2} to the area of S_{1} ?
$[5+10=15]$
