Notation: \mathbb{R} denotes the set of all real numbers with the usual metric and topology.

1. Let M be a real $n \times n$ matrix with all diagonal entries equal to r and all non-diagonal entries equal to s. Compute the determinant of M.
2. Let $F[X]$ be the polynomial ring over a field F. Prove that the rings $F[X] /\left\langle X^{2}\right\rangle$ and $F[X] /\left\langle X^{2}-1\right\rangle$ are isomorphic if and only if the characteristic of F is 2 .
3. Let C be a subset of \mathbb{R} endowed with the subspace topology. If every continuous real-valued function on C is bounded, then prove that C is compact.
4. Let $A=\left(a_{i j}\right)$ be a nonzero real $n \times n$ matrix such that $a_{i j}=0$ for $i \geq j$. If $\sum_{i=0}^{k} c_{i} A^{i}=0$ for some $c_{i} \in \mathbb{R}$, then prove that $c_{0}=c_{1}=0$. Here A^{i} is the i-th power of A.
5. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by

$$
g(x)= \begin{cases}x \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

Prove that $g(x)$ has a local maximum and a local minimum in the interval $\left(-\frac{1}{m}, \frac{1}{m}\right)$ for any positive integer m.
6. Fix an integer $n \geq 1$. Suppose that n is divisible by distinct natural numbers k_{1}, k_{2}, k_{3} such that

$$
\operatorname{gcd}\left(k_{1}, k_{2}\right)=\operatorname{gcd}\left(k_{2}, k_{3}\right)=\operatorname{gcd}\left(k_{3}, k_{1}\right)=1 .
$$

Pick a random natural number j uniformly from the set $\{1,2,3, \ldots, n\}$. Let A_{d} be the event that j is divisible by d. Prove that the events $A_{k_{1}}, A_{k_{2}}, A_{k_{3}}$ are mutually independent.
7. Let $f:[0,1] \rightarrow[0, \infty)$ be a function. Assume that there exists $M \geq 0$ such that $\sum_{i=1}^{k} f\left(x_{i}\right) \leq M$ for all $k \geq 1$ and for all $x_{1}, \ldots, x_{k} \in[0,1]$. Show that the set $\{x \mid f(x) \neq 0\}$ is countable.
8. Let G be a group having exactly three subgroups. Prove that G is cyclic of order p^{2} for some prime p.

