NOTATION: \mathbb{R} denotes the set of all real numbers with the usual metric and topology.

- 1. Let M be a real $n \times n$ matrix with all diagonal entries equal to r and all non-diagonal entries equal to s. Compute the determinant of M.
- 2. Let F[X] be the polynomial ring over a field F. Prove that the rings $F[X]/\langle X^2 \rangle$ and $F[X]/\langle X^2 1 \rangle$ are isomorphic if and only if the characteristic of F is 2.
- 3. Let C be a subset of \mathbb{R} endowed with the subspace topology. If every continuous real-valued function on C is bounded, then prove that C is compact.
- 4. Let $A = (a_{ij})$ be a nonzero real $n \times n$ matrix such that $a_{ij} = 0$ for $i \ge j$. If $\sum_{i=0}^{k} c_i A^i = 0$ for some $c_i \in \mathbb{R}$, then prove that $c_0 = c_1 = 0$. Here A^i is the *i*-th power of A.
- 5. Let $g \colon \mathbb{R} \to \mathbb{R}$ be the function given by

$$g(x) = \begin{cases} x \sin(\frac{1}{x}), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Prove that g(x) has a local maximum and a local minimum in the interval $\left(-\frac{1}{m}, \frac{1}{m}\right)$ for any positive integer m.

6. Fix an integer $n \ge 1$. Suppose that n is divisible by distinct natural numbers k_1, k_2, k_3 such that

$$gcd(k_1, k_2) = gcd(k_2, k_3) = gcd(k_3, k_1) = 1.$$

Pick a random natural number j uniformly from the set $\{1, 2, 3, \ldots, n\}$. Let A_d be the event that j is divisible by d. Prove that the events $A_{k_1}, A_{k_2}, A_{k_3}$ are mutually independent.

- 7. Let $f: [0,1] \to [0,\infty)$ be a function. Assume that there exists $M \ge 0$ such that $\sum_{i=1}^{k} f(x_i) \le M$ for all $k \ge 1$ and for all $x_1, \ldots, x_k \in [0,1]$. Show that the set $\{x \mid f(x) \ne 0\}$ is countable.
- 8. Let G be a group having exactly three subgroups. Prove that G is cyclic of order p^2 for some prime p.