Notation. In the following, \mathbb{R} denotes the set of real numbers.
(1) (a) Let $\left\{f_{n}\right\}$ be a sequence of continuous real-valued functions on $[0,1]$ converging uniformly on $[0,1]$ to a function f. Suppose for all $n \geq 1$ there exists $x_{n} \in[0,1]$ such that $f_{n}\left(x_{n}\right)=0$. Show that there exists $x \in[0,1]$ such that $f(x)=0$.
(b) Give an example of a sequence $\left\{f_{n}\right\}$ of continuous real-valued functions on $[0, \infty)$ converging uniformly on $[0, \infty)$ to a function f, such that for each $n \geq 1$ there exists $x_{n} \in[0, \infty)$ satisfying $f_{n}\left(x_{n}\right)=0$, but f satisfies $f(x) \neq 0$ for all $x \in[0, \infty)$.
(2) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Show that

$$
\lim _{n \rightarrow \infty} \prod_{k=1}^{n}\left(1+\frac{1}{n} f\left(\frac{k}{n}\right)\right)=e^{\int_{0}^{1} f(x) d x} .
$$

(3) (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice continuously differentiable function. Show that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}=f^{\prime \prime}(x)
$$

for all $x \in \mathbb{R}$.
(b) Show that if f further satisfies

$$
\frac{1}{2 y} \int_{x-y}^{x+y} f(t) d t=f(x)
$$

for all $x \in \mathbb{R}, y>0$, then there exist $a, b \in \mathbb{R}$ such that $f(x)=a x+b$ for all $x \in \mathbb{R}$.
(4) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice continuously differentiable function. Show that if f is bounded and $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}$ then f must be constant.
(5) Let J be a 2×2 real matrix such that $J^{2}=-I$, where I is the identity matrix.
(a) Show that if $v \in \mathbb{R}^{2}$ and $v \neq 0$, then the vectors $v, J v \in \mathbb{R}^{2}$ are linearly independent.
(b) Show that there exists an invertible 2×2 real matrix U such that

$$
U J U^{-1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

(6) Suppose V is a 3-dimensional real vector space and $T: V \rightarrow V$ is a linear map such that $T^{3}=0$ and $T^{2} \neq 0$.
(a) Show that there exists a vector $v \in V$ such that the set $\left\{v, T(v), T^{2}(v)\right\}$ is a basis of V.
(b) Suppose $S: V \rightarrow V$ is another linear map such that $S^{3}=0$ and $S^{2} \neq 0$. Show that there exists an invertible linear map $U: V \rightarrow V$ such that $S=U T U^{-1}$.
(7) Let K be a field, and let R be the ring $K[x]$. Let $I \subset R$ be the ideal generated by $(x-1)(x-2)$. Find all maximal ideals of the ring R / I.
(8) Let G be a finite group, and let H be a normal subgroup of G. Let P be a Sylow p-subgroup of H.
(a) Show that for all $g \in G$, there exists $h \in H$ such that $g P g^{-1}=h P h^{-1}$. (b) Let $N=\left\{g \in G \mid g P g^{-1}=P\right\}$. Let $H N$ be the set $H N=\{h n \mid h \in$ $H, n \in N\}$. Show that $G=H N$.

