1. Let A = (1, -1), B = (-2, 0), C = (1, 2) and D be the vertices of a parallelogram in the X - Y plane listed clockwise. Then the point D is (A) (A, 1) = (B) (-2, -2) = (C) (2, 0) = (D) (-2, 1)

(A)
$$(4,1)$$
 (B) $(-2,-3)$ (C) $(3,0)$ (D) $(-2,1)$

- 2. Let $z = (1-t^2) + i\sqrt{1-t^2}$ be a complex number where t is a real number such that |t| < 1. Then the locus of z in the complex plane is
 - (A) an ellipse (B) a hyperbola
 - (C) a parabola (D) a pair of straight lines
- 3. Let $\int_{1}^{2} e^{x^{2}} dx = a$. Then the value of $\int_{e}^{e^{4}} \sqrt{\log_{e} x} dx$ is (A) $e^{4} - a$ (B) $2e^{4} - a$ (C) $e^{4} - e - 4a$ (D) $2e^{4} - e - a$
- 4. The area bounded by the curves $y = e^x$, $y = xe^x$ and the y-axis is
 - (A) e 2 (B) e + 2 (C) e 1 (D) 2e 3
- 5. The set of all solutions of the inequality

$$\frac{1}{2^x - 1} > \frac{1}{1 - 2^{x - 1}}$$

is

(A)
$$(1, \infty)$$

(B) $(0, \log_2(\frac{4}{3}))$
(C) $(0, \log_2(\frac{4}{3})) \cup (1, \infty)$
(D) $(-1, \infty)$

6. If $\lim_{x \to 0} \frac{ae^x - b\cos x}{x} = 5$, then

(A) a and b are uniquely determined

- (B) a is uniquely determined, but not b
- (C) b is uniquely determined, but not a
- (D) neither a nor b is uniquely determined

- 7. Consider four events P, Q, R and S such that if any of P and Q occurs, then either R occurs or S doesn't occur. If exactly one of R and Salways occurs, which of the following statements is necessarily true? (The notation E^c denotes the complement of the event E)
 - (A) $R \implies P$
 - (B) $R \implies P^c$
 - (C) $R^c \implies Q^c$
 - (D) $R^c \implies Q$
- 8. The particular solution of

$$\log_e\left(\frac{dy}{dx}\right) = 5x + 7y, \quad y(0) = 0$$

is

(A)
$$e^{5x} + 5e^{-7y} = 7$$
 (B) $7e^{5x} - 5e^{-7y} = 5$
(C) $5e^{5x} + 7e^{7y} = 12$ (D) $7e^{5x} + 5e^{-7y} = 12$

9. Define
$$A_j = \sum_{i=1}^n i^j$$
, $j = 0, 1, 2, 3$. Then

$$\lim_{n \to \infty} \frac{A_1 A_2}{A_0 A_3}$$

is

(

(A) 0 (B)
$$\frac{1}{2}$$
 (C) $\frac{2}{3}$ (D) 1

- 10. Let $p, q, r \in \mathbb{R}$. If $f(x) = px^2 + qx + r$ be such that p + q + r = 3 and f(x+y) = f(x) + f(y) + xy, for all $x, y \in \mathbb{R}$. Then the value of f(5) is (A) 25 (B) 30 (C) 35 (D) 40
- 11. If ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$, ..., ${}^{n}C_{n}$ denote the binomial coefficients in the expansion of $(1+x)^n$, p > 0 is a real number and q = 1 - p, then

$$\sum_{r=0}^{n} r^{2} \ ^{n}C_{r}p^{n-r}q^{r}$$
 is
(A) $np^{2}q^{2}$ (B) $n^{2}p^{2}q^{2}$ (C) $npq + n^{2}p^{2}$ (D) $npq + n^{2}q^{2}$

- 12. If |z+3-2i| = 8 and the maximum and the minimum values of |2z+9-8i|are α and β , respectively, then the value of $\alpha + \beta$ is
 - (B) 21 (C) 32 (A) 10 (D) 27

- 13. Consider the cubic equation $x^3 = 2x + 5$. Which of the following statements about the above equation is true?
 - (A) All its roots are real and positive
 - (B) It has two positive real roots and one negative real root
 - (C) It has two negative real roots and one positive real root
 - (D) It has one real root and a pair of complex roots
- 14. Consider two real-valued sequences $\{x_n\}$ and $\{y_n\}$ satisfying the condition $x_n^3 y_n^3 \to 0$ as $n \to \infty$. Then, as $n \to \infty$,
 - (A) $x_n y_n \to 0$ always
 - (B) $x_n y_n \to 0$ only if $\{x_n\}$ converges
 - (C) $x_n y_n \to 0$ only if $\{|x_n| |y_n|\}$ converges
 - (D) $x_n y_n \to 0$ only if $\{|x_n^2 + x_n y_n + y_n^2|\}$ converges
- 15. Let $\frac{d}{dx}P(x) = \frac{e^{\sin x}}{x}, x > 0$. If $\int_1^2 \frac{3}{x} e^{\sin x^3} dx = P(k) P(1)$, then which of the following is a possible value of k?

$$(A) 2 (B) 4 (C) 8 (D) 16$$

16. The distance of the point (1, -2, 3) from the plane x - y + z = 11measured along a line parallel to $\frac{x}{2} = \frac{y}{3} = \frac{z}{6}$ is

$$(A) 5 (B) 6 (C) 7 (D) 8$$

17. The number of words that can be constructed using 10 letters of the English alphabet such that all five vowels appear exactly once in the word is

(A) ${}^{21}C_5 \ 10!$ (B) ${}^{21}C_5 \ (5!)^2$ (C) ${}^{10}P_5 \ {}^{21}P_5$ (D) ${}^{10}P_5 \ (21)^5$

- 18. Let $f : [0, \infty) \to \mathbb{R}$ be a differentiable function with f(0) = 1 and f(x)f'(x) > 0, for all x. Let A(n) be the area of the region bounded by
 - x-axis, y-axis, graph of f and the line x = n. Then
 - (A) $\{A(n)\}_{n\geq 1}$ is a convergent sequence
 - (B) $\{A(n)\}_{n\geq 1}$ is an oscillatory sequence
 - (C) the function $A : \mathbb{N} \to \mathbb{R}$ is increasing
 - (D) none of the above statements is true

19. Let x, y, z be three natural numbers. Then the number of triplets (x, y, z) such that xyz = 100 is

$$(A) 36 (B) 25 (C) 72 (D) 18$$

20. How many distinct straight lines can one form that are given by an equation ax + by = 0, where a and b are numbers from the set $\{0, 1, 2, 3, 4, 5, 6, 7\}$?

$$(A) 63 (B) 57 (C) 37 (D) 49$$

- 21. Consider three non-zero matrices A, B and C such that ABB' = CBB' where B' is the transpose of B. Which of the following statements is necessarily true?
 - (A) r(A) = r(C)
 - (B) non-zero eigenvalues of A and C are identical
 - (C) AB = CB
 - (D) none of the above
- 22. Let m and n be nonzero integers. Define

$$A_{m,n} = \left\{ x \in \mathbb{R} : n^2 x^3 + 2020x^2 + mx = 0 \right\}.$$

Then the number of pairs (m, n) for which $A_{m,n}$ has exactly two points is

- (A) 0 (B) 10 (C) 16 (D) ∞
- 23. Consider two independent events with the same probability p (0 < p < 1). Then the probability of occurrence of at least one of the two events is
 - (A) the same for all p
 - (B) linearly increasing in p
 - (C) strictly convex in p
 - (D) strictly concave in p
- 24. Let S be the set of all 3×3 real matrices $A = ((a_{ij}))$ such that the matrix $((a_{ij}^3))$ has rank one. Define a set $R = \{\operatorname{rank}(A) : A \in S\}$. Then R is equal to
 - (A) $\{1\}$ (B) $\{1,2\}$ (C) $\{1,3\}$ (D) $\{1,2,3\}$

25. The function $f : \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} e^{-\frac{1}{x}}, & x > 0\\ 0, & x \le 0 \end{cases}$$

Then

- (A) f is not continuous
- (B) f is continuous, but not differentiable everywhere
- (C) f is differentiable but f' is not continuous
- (D) f is differentiable and f' is continuous
- 26. For a cyclic group G of order 12, the number of subgroups of G is

$$(A) 2 (B) 6 (C) 8 (D) 11$$

27. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function and f(1) = 4. Then the value of

$$\lim_{x \to 1} \int_4^{f(x)} \frac{2t}{x-1} dt$$

is

(A)
$$8f'(1)$$
 (B) $2f'(1)$ (C) $4f'(1)$ (D) $f'(1)$

28. The series

$$\frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \dots$$

- (A) is uniformly convergent for all x
- (B) is convergent for all x, but the convergence is not uniform
- (C) is convergent only for $|x| \leq \frac{1}{2}$, but the convergence is not uniform
- (D) is uniformly convergent on $\left[-\frac{1}{2}, \frac{1}{2}\right]$
- 29. Let S and T be two non-empty sets and $f: S \to T$ be a function such that $f(A \cap B) = f(A) \cap f(B)$ for all subsets A and B of S. Then
 - (A) there exist $A \subset S$ such that $f^{-1}f(A) \neq A$
 - (B) f is one-to-one
 - (C) there exist disjoint subsets A, B of S such that $f(A) \cap f(B) \neq \phi$
 - (D) none of the above statements is necessarily true

30. Let $x_1, x_2, ..., x_n \in \mathbb{R}$ be distinct reals. Define the set

$$A = \Big\{ \big(f_1(t), f_2(t), ..., f_n(t) \big) : t \in \mathbb{R} \Big\},\$$

where for $1 \le k \le n$,

$$f_k(t) = \begin{cases} 1, & \text{if } x_k \le t \\ 0, & \text{otherwise.} \end{cases}$$

Then A contains

- (A) exactly n distinct elements
- (B) exactly (n+1) distinct elements
- (C) exactly 2^n distinct elements
- (D) infinitely many distinct elements