1. The sum of all the solutions of $2+\log _{2}(x-2)=\log _{(x-2)} 8$ in the interval $(2, \infty)$ is
(A) $\frac{35}{8}$.
(B) 5 .
(C) $\frac{49}{8}$.
(D) $\frac{55}{8}$.
2. The value of

$$
1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots+\frac{1}{1+2+3+\cdots 2021}
$$

is
(A) $\frac{2021}{1010}$.
(B) $\frac{2021}{1011}$.
(C) $\frac{2021}{1012}$.
(D) $\frac{2021}{1013}$.
3. The number of ways one can express $2^{2} 3^{3} 5^{5} 7^{7}$ as a product of two numbers a and b, where $\operatorname{gcd}(a, b)=1$, and $1<a<b$, is
(A) 5 .
(B) 6 .
(C) 7 .
(D) 8 .
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that

$$
f(x+1)=\frac{1}{2} f(x) \text { for all } x \in \mathbb{R}
$$

and let $a_{n}=\int_{0}^{n} f(x) d x$ for all integers $n \geq 1$. Then:
(A) $\lim _{n \rightarrow \infty} a_{n}$ exists and equals $\int_{0}^{1} f(x) d x$.
(B) $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
(C) $\lim _{n \rightarrow \infty} a_{n}$ exists if and only if $\left|\int_{0}^{1} f(x) d x\right|<1$.
(D) $\lim _{n \rightarrow \infty} a_{n}$ exists and equals $2 \int_{0}^{1} f(x) d x$.
5. Let $a, b, c, d>0$, be any real numbers. Then the maximum possible value of $c x+d y$, over all points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, must be
(A) $\sqrt{a^{2} c^{2}+b^{2} d^{2}}$.
(B) $\sqrt{a^{2} b^{2}+c^{2} d^{2}}$.
(C) $\sqrt{\frac{a^{2} c^{2}+b^{2} d^{2}}{a^{2}+b^{2}}}$.
(D) $\sqrt{\frac{a^{2} b^{2}+c^{2} d^{2}}{c^{2}+d^{2}}}$.
6. Let $f(x)=\sin x+\alpha x, x \in \mathbb{R}$, where α is a fixed real number. The function f is one-to-one if and only if
(A) $\alpha>1$ or $\alpha<-1$.
(B) $\alpha \geq 1$ or $\alpha \leq-1$.
(C) $\alpha \geq 1$ or $\alpha<-1$.
(D) $\alpha>1$ or $\alpha \leq-1$.
7. The volume of the region $S=\{(x, y, z):|x|+2|y|+3|z| \leq 6\}$ is
(A) 36 .
(B) 48 .
(C) 72 .
(D) 6 .
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function such that $\frac{d^{2} f(x)}{d x^{2}}$ is positive for all $x \in \mathbb{R}$, and suppose $f(0)=1, f(1)=4$. Which of the following is not a possible value of $f(2)$?
(A) 7 .
(B) 8 .
(C) 9 .
(D) 10 .
9. Let

$$
f(x)=e^{-|x|}, x \in \mathbb{R}
$$

and

$$
g(\theta)=\int_{-1}^{1} f\left(\frac{x}{\theta}\right) d x, \theta \neq 0
$$

Then,

$$
\lim _{\theta \rightarrow 0} \frac{g(\theta)}{\theta}
$$

(A) equals 0.
(B) equals $+\infty$.
(C) equals 2.
(D) does not exist.
10. Consider the curves $x^{2}+y^{2}-4 x-6 y-12=0,9 x^{2}+4 y^{2}-900=0$ and $y^{2}-6 y-6 x+51=0$. The maximum number of disjoint regions into which these curves divide the $X Y$-plane (excluding the curves themselves), is
(A) 4 .
(B) 5 .
(C) 6 .
(D) 7 .
11. A box has 13 distinct pairs of socks. Let p_{r} denote the probability of having at least one matching pair among a bunch of r socks drawn at random from the box. If r_{0} is the maximum possible value of r such that $p_{r}<1$, then the value of $p_{r_{0}}$ is
(A) $1-\frac{12}{{ }^{26} C_{12}}$.
(B) $1-\frac{13}{{ }^{26} C_{13}}$.
(C) $1-\frac{2^{13}}{{ }^{26} C_{13}}$.
(D) $1-\frac{2^{12}}{{ }^{26} C_{12}}$.
12. Consider the following two subsets of \mathbb{C} :

$$
A=\left\{\frac{1}{z}:|z|=2\right\} \text { and } B=\left\{\frac{1}{z}:|z-1|=2\right\}
$$

Then
(A) A is a circle, but B is not a circle.
(B) B is a circle, but A is not a circle.
(C) A and B are both circles.
(D) Neither A nor B is a circle.
13. Let a, b, c and d be four non-negative real numbers where $a+b+c+d=$ 1. The number of different ways one can choose these numbers such that $a^{2}+b^{2}+c^{2}+d^{2}=\max \{a, b, c, d\}$ is
(A) 1 .
(B) 5 .
(C) 11 .
(D) 15 .
14. Suppose $f(x)$ is a twice differentiable function on $[a, b]$ such that

$$
f(a)=0=f(b)
$$

and

$$
x^{2} \frac{d^{2} f(x)}{d x^{2}}+4 x \frac{d f(x)}{d x}+2 f(x)>0 \text { for all } x \in(a, b) .
$$

Then,
(A) f is negative for all $x \in(a, b)$.
(B) f is positive for all $x \in(a, b)$.
(C) $f(x)=0$ for exactly one $x \in(a, b)$.
(D) $f(x)=0$ for at least two $x \in(a, b)$.
15. The polynomial $x^{4}+4 x+c=0$ has at least one real root if and only if
(A) $c<2$.
(B) $c \leq 2$.
(C) $c<3$.
(D) $c \leq 3$.
16. The number of different ways to colour the vertices of a square $P Q R S$ using one or more colours from the set \{Red, Blue, Green, Yellow\}, such that no two adjacent vertices have the same colour is
(A) 36 .
(B) 48 .
(C) 72 .
(D) 84 .
17. Define $a=p^{3}+p^{2}+p+11$ and $b=p^{2}+1$, where p is any prime number. Let $d=\operatorname{gcd}(a, b)$. Then the set of possible values of d is
(A) $\{1,2,5\}$.
(B) $\{2,5,10\}$.
(C) $\{1,5,10\}$.
(D) $\{1,2,10\}$.
18. Consider all 2×2 matrices whose entries are distinct and taken from the set $\{1,2,3,4\}$. The sum of determinants of all such matrices is
(A) 24 .
(B) 10 .
(C) 12 .
(D) 0 .
19. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be any twice differentiable function such that its second derivative is continuous and

$$
\frac{d f(x)}{d x} \neq 0 \text { for all } x \neq 0
$$

If

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=\pi,
$$

then
(A) for all $x \neq 0, \quad f(x)>f(0)$.
(B) for all $x \neq 0, \quad f(x)<f(0)$.
(C) for all $x, \frac{d^{2} f(x)}{d x^{2}}>0$.
(D) for all $x, \frac{d^{2} f(x)}{d x^{2}}<0$.
20. The number of all integer solutions of the equation $x^{2}+y^{2}+x-y=$ 2021 is
(A) 5 .
(B) 7 .
(C) 1 .
(D) 0 .
21. The number of different values of a for which the equation $x^{3}-x+a=$ 0 has two identical real roots is
(A) 0 .
(B) 1 .
(C) 2 .
(D) 3 .
22. For a positive integer n, the equation

$$
x^{2}=n+y^{2}, \quad x, y \text { integers },
$$

does not have a solution if and only if
(A) $n=2$.
(B) n is a prime number.
(C) n is an odd number.
(D) n is an even number not divisible by 4 .
23. For $0 \leq x<2 \pi$, the number of solutions of the equation

$$
\sin ^{2} x+2 \cos ^{2} x+3 \sin x \cos x=0
$$

is
(A) 1 .
(B) 2 .
(C) 3 .
(D) 4 .
24. Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a continuous function such that

$$
f(x+y)=f(x) f(y),
$$

for all $x, y \in \mathbb{R}$. Suppose that f is differentiable at $x=1$ and

$$
\left.\frac{d f(x)}{d x}\right|_{x=1}=2 .
$$

Then, the value of $f(1) \log _{e} f(1)$ is
(A) e.
(B) 2 .
(C) $\log _{e} 2$.
(D) 1 .
25. The expression

$$
\sum_{k=0}^{10} 2^{k} \tan \left(2^{k}\right)
$$

equals
(A) $\cot 1+2^{11} \cot \left(2^{11}\right)$.
(B) $\cot 1-2^{10} \cot \left(2^{10}\right)$.
(C) $\cot 1+2^{10} \cot \left(2^{10}\right)$.
(D) $\cot 1-2^{11} \cot \left(2^{11}\right)$.
26. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}(1-\cos x) \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

Then,
(A) f is discontinuous.
(B) f is continuous but not differentiable.
(C) f is differentiable and its derivative is discontinuous.
(D) f is differentiable and its derivative is continuous.
27. If the maximum and minimum values of $\sin ^{6} x+\cos ^{6} x$, as x takes all real values, are a and b, respectively, then $a-b$ equals
(A) $\frac{1}{2}$.
(B) $\frac{2}{3}$.
(C) $\frac{3}{4}$.
(D) 1 .
28. If two real numbers x and y satisfy $(x+5)^{2}+(y-10)^{2}=196$, then the minimum possible value of $x^{2}+2 x+y^{2}-4 y$ is
(A) $271-112 \sqrt{5}$.
(B) $14-4 \sqrt{5}$.
(C) $276-112 \sqrt{5}$.
(D) $9-4 \sqrt{5}$.
29. Let us denote the fractional part of a real number x by $\{x\}$ (note: $\{x\}=x-[x]$ where $[x]$ is the integer part of $x)$. Then,

$$
\lim _{n \rightarrow \infty}\left\{(3+2 \sqrt{2})^{n}\right\}
$$

(A) equals 0 .
(B) equals 1 .
(C) equals $\frac{1}{2}$.
(D) does not exist.
30. Let

$$
\begin{gathered}
p(x)=x^{3}-3 x^{2}+2 x, x \in \mathbb{R}, \\
f_{0}(x)= \begin{cases}\int_{0}^{x} p(t) d t, & x \geq 0 \\
-\int_{x}^{0} p(t) d t, & x<0,\end{cases} \\
f_{1}(x)=e^{f_{0}(x)}, \quad f_{2}(x)=e^{f_{1}(x)}, \quad \ldots \quad, f_{n}(x)=e^{f_{n-1}(x)} .
\end{gathered}
$$

How many roots does the equation $\frac{d f_{n}(x)}{d x}=0$ have in the interval $(-\infty, \infty)$?
(A) 1 .
(B) 3 .
(C) $n+3$.
(D) $3 n$.

