1. The sum of all the solutions of $2 + \log_2(x-2) = \log_{(x-2)} 8$ in the interval $(2, \infty)$ is

(A)
$$\frac{35}{8}$$
. (B) 5. (C) $\frac{49}{8}$. (D) $\frac{55}{8}$.

2. The value of

$$1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots2021}$$

is

(A)
$$\frac{2021}{1010}$$
. (B) $\frac{2021}{1011}$. (C) $\frac{2021}{1012}$. (D) $\frac{2021}{1013}$.

3. The number of ways one can express $2^2 3^3 5^5 7^7$ as a product of two numbers a and b, where gcd(a, b) = 1, and 1 < a < b, is

$$(A) 5. (B) 6. (C) 7. (D) 8.$$

4. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that

$$f(x+1) = \frac{1}{2}f(x)$$
 for all $x \in \mathbb{R}$,

and let $a_n = \int_0^n f(x) dx$ for all integers $n \ge 1$. Then:

- (A) $\lim_{n\to\infty} a_n$ exists and equals $\int_0^1 f(x) dx$.
- (B) $\lim_{n\to\infty} a_n$ does not exist.
- (C) $\lim_{n\to\infty} a_n$ exists if and only if $\left|\int_0^1 f(x) dx\right| < 1$.
- (D) $\lim_{n\to\infty} a_n$ exists and equals $2\int_0^1 f(x) dx$.

5. Let a, b, c, d > 0, be any real numbers. Then the maximum possible value of cx + dy, over all points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, must be

(A)
$$\sqrt{a^2c^2 + b^2d^2}$$
.
(B) $\sqrt{a^2b^2 + c^2d^2}$
(C) $\sqrt{\frac{a^2c^2 + b^2d^2}{a^2 + b^2}}$.
(B) $\sqrt{\frac{a^2b^2 + c^2d^2}{c^2 + d^2}}$.

6. Let $f(x) = \sin x + \alpha x, x \in \mathbb{R}$, where α is a fixed real number. The function f is one-to-one if and only if

- (A) $\alpha > 1$ or $\alpha < -1$. (B) $\alpha \ge 1$ or $\alpha \le -1$.
- (C) $\alpha \ge 1$ or $\alpha < -1$. (D) $\alpha > 1$ or $\alpha \le -1$.

7. The volume of the region $S = \{(x, y, z) : |x| + 2|y| + 3|z| \le 6\}$ is

$$(A) 36. (B) 48. (C) 72. (D) 6.$$

8. Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that $\frac{d^2 f(x)}{dx^2}$ is positive for all $x \in \mathbb{R}$, and suppose f(0) = 1, f(1) = 4. Which of the following is not a possible value of f(2)?

9. Let

$$f(x) = e^{-|x|}, x \in \mathbb{R},$$

and

$$g(\theta) = \int_{-1}^{1} f\left(\frac{x}{\theta}\right) dx, \ \theta \neq 0.$$

Then,

$$\lim_{\theta \to 0} \frac{g(\theta)}{\theta}$$

(\mathbf{A})	equals 0.	(B)	equals $+\infty$.
(C)	equals 2.	(D)	does not exist.

10. Consider the curves $x^2 + y^2 - 4x - 6y - 12 = 0$, $9x^2 + 4y^2 - 900 = 0$ and $y^2 - 6y - 6x + 51 = 0$. The maximum number of disjoint regions into which these curves divide the XY-plane (excluding the curves themselves), is

$$(A) 4. (B) 5. (C) 6. (D) 7.$$

11. A box has 13 distinct pairs of socks. Let p_r denote the probability of having at least one matching pair among a bunch of r socks drawn at random from the box. If r_0 is the maximum possible value of r such that $p_r < 1$, then the value of p_{r_0} is

(A)
$$1 - \frac{12}{^{26}C_{12}}$$
. (B) $1 - \frac{13}{^{26}C_{13}}$. (C) $1 - \frac{2^{13}}{^{26}C_{13}}$. (D) $1 - \frac{2^{12}}{^{26}C_{12}}$.

12. Consider the following two subsets of \mathbb{C} :

$$A = \left\{ \frac{1}{z} : |z| = 2 \right\}$$
 and $B = \left\{ \frac{1}{z} : |z - 1| = 2 \right\}$.

Then

- (A) A is a circle, but B is not a circle.
- (B) B is a circle, but A is not a circle.
- (C) A and B are both circles.
- (D) Neither A nor B is a circle.
- 13. Let a, b, c and d be four non-negative real numbers where a+b+c+d =
 1. The number of different ways one can choose these numbers such that a² + b² + c² + d² = max{a, b, c, d} is

$$(A) 1. (B) 5. (C) 11. (D) 15.$$

14. Suppose f(x) is a twice differentiable function on [a, b] such that

$$f(a) = 0 = f(b)$$

and

$$x^{2}\frac{d^{2}f(x)}{dx^{2}} + 4x\frac{df(x)}{dx} + 2f(x) > 0 \text{ for all } x \in (a,b).$$

Then,

- (A) f is negative for all $x \in (a, b)$.
- (B) f is positive for all $x \in (a, b)$.
- (C) f(x) = 0 for exactly one $x \in (a, b)$.
- (D) f(x) = 0 for at least two $x \in (a, b)$.
- 15. The polynomial $x^4 + 4x + c = 0$ has at least one real root if and only if

(A)
$$c < 2$$
. (B) $c \le 2$. (C) $c < 3$. (D) $c \le 3$.

16. The number of different ways to colour the vertices of a square *PQRS* using one or more colours from the set {Red, Blue, Green, Yellow}, such that no two adjacent vertices have the same colour is

17. Define $a = p^3 + p^2 + p + 11$ and $b = p^2 + 1$, where p is any prime number. Let d = gcd(a, b). Then the set of possible values of d is

(A)
$$\{1, 2, 5\}$$
. (B) $\{2, 5, 10\}$. (C) $\{1, 5, 10\}$. (D) $\{1, 2, 10\}$.

18. Consider all 2×2 matrices whose entries are distinct and taken from the set $\{1, 2, 3, 4\}$. The sum of determinants of all such matrices is

$$(A) 24. (B) 10. (C) 12. (D) 0.$$

19. Let $f : \mathbb{R} \to \mathbb{R}$ be any twice differentiable function such that its second derivative is continuous and

$$\frac{df(x)}{dx} \neq 0 \text{ for all } x \neq 0.$$

If

$$\lim_{x \to 0} \frac{f(x)}{x^2} = \pi \,,$$

then

- (A) for all $x \neq 0$, f(x) > f(0).
- (B) for all $x \neq 0$, f(x) < f(0).
- (C) for all x, $\frac{d^2 f(x)}{dx^2} > 0$.
- (D) for all x, $\frac{d^2 f(x)}{dx^2} < 0$.
- 20. The number of all integer solutions of the equation $x^2 + y^2 + x y = 2021$ is
 - (A) 5. (B) 7. (C) 1. (D) 0.

- 21. The number of different values of a for which the equation $x^3 x + a = 0$ has two identical real roots is
 - (A) 0. (B) 1. (C) 2. (D) 3.
- 22. For a positive integer n, the equation

$$x^2 = n + y^2$$
, x, y integers,

does not have a solution if and only if

- (A) n = 2.
- (B) n is a prime number.
- (C) n is an odd number.
- (D) n is an even number not divisible by 4.
- 23. For $0 \le x < 2\pi$, the number of solutions of the equation

$$\sin^2 x + 2\,\cos^2 x + 3\,\sin\,x\,\cos\,x = 0$$

is

$$(A) 1. (B) 2. (C) 3. (D) 4.$$

24. Let $f: \mathbb{R} \to [0, \infty)$ be a continuous function such that

$$f(x+y) = f(x)f(y) \,,$$

for all $x, y \in \mathbb{R}$. Suppose that f is differentiable at x = 1 and

$$\frac{df(x)}{dx}\Big|_{x=1} = 2.$$

Then, the value of $f(1)\log_e f(1)$ is

(A) e. (B) 2. (C) $\log_e 2$. (D) 1.

25. The expression

$$\sum_{k=0}^{10} 2^k \tan(2^k)$$

equals

- (A) $\cot 1 + 2^{11}\cot (2^{11})$. (B) $\cot 1 2^{10}\cot (2^{10})$.
- (C) $\cot 1 + 2^{10}\cot (2^{10})$. (D) $\cot 1 2^{11}\cot (2^{11})$.
- 26. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} (1 - \cos x) \sin\left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Then,

- (A) f is discontinuous.
- (B) f is continuous but not differentiable.
- (C) f is differentiable and its derivative is discontinuous.
- (D) f is differentiable and its derivative is continuous.
- 27. If the maximum and minimum values of $\sin^6 x + \cos^6 x$, as x takes all real values, are a and b, respectively, then a b equals

(A)
$$\frac{1}{2}$$
. (B) $\frac{2}{3}$. (C) $\frac{3}{4}$. (D) 1.

- 28. If two real numbers x and y satisfy $(x + 5)^2 + (y 10)^2 = 196$, then the minimum possible value of $x^2 + 2x + y^2 - 4y$ is
 - (A) $271 112\sqrt{5}$. (B) $14 4\sqrt{5}$.
 - (C) $276 112\sqrt{5}$. (D) $9 4\sqrt{5}$.
- 29. Let us denote the fractional part of a real number x by $\{x\}$ (note: $\{x\} = x - [x]$ where [x] is the integer part of x). Then,

$$\lim_{n \to \infty} \left\{ (3 + 2\sqrt{2})^n \right\}$$

- (A) equals 0. (B) equals 1.
- (C) equals $\frac{1}{2}$. (D) does not exist.

30. Let

$$p(x) = x^{3} - 3x^{2} + 2x, \ x \in \mathbb{R},$$

$$f_{0}(x) = \begin{cases} \int_{0}^{x} p(t)dt, & x \ge 0, \\ -\int_{x}^{0} p(t)dt, & x < 0, \end{cases}$$

$$f_{1}(x) = e^{f_{0}(x)}, \quad f_{2}(x) = e^{f_{1}(x)}, \quad \dots \quad , f_{n}(x) = e^{f_{n-1}(x)}.$$

How many roots does the equation $\frac{df_n(x)}{dx} = 0$ have in the interval $(-\infty, \infty)$?

(A) 1. (B) 3. (C)
$$n + 3$$
. (D) $3n$.