GROUP A

- 1. Let $f(x) = x^2 2x + 2$. Let L_1 and L_2 be the tangents to its graph at x = 0 and x = 2 respectively. Find the area of the region enclosed by the graph of f and the two lines L_1 and L_2 .
- 2. Find the number of 3×3 matrices A such that the entries of A belong to the set \mathbb{Z} of all integers, and such that the trace of A^tA is 6. $(A^t$ denotes the transpose of the matrix A).
- 3. Consider n independent and identically distributed positive random variables X_1, X_2, \ldots, X_n . Suppose S is a fixed subset of $\{1, 2, \ldots, n\}$ consisting of k distinct elements where $1 \le k < n$.
 - (a) Compute

$$\mathbb{E}\left[\frac{\sum_{i\in S}X_i}{\sum_{i=1}^n X_i}\right].$$

(b) Assume that X_i 's have mean μ and variance σ^2 , $0 < \sigma^2 < \infty$. If $j \notin S$, show that the correlation between $(\sum_{i \in S} X_i) X_j$ and $\sum_{i \in S} X_i$ lies between $-\frac{1}{\sqrt{k+1}}$ and $\frac{1}{\sqrt{k+1}}$.

GROUP B

- 4. Let $X_1, X_2, ..., X_n$ be independent and identically distributed random variables. Let $S_n = X_1 + \cdots + X_n$. For each of the following statements, determine whether they are true or false. Give reasons in each case.
 - (a) If $S_n \sim Exp$ with mean n, then each $X_i \sim Exp$ with mean 1.

1

(b) If $S_n \sim Bin(nk, p)$, then each $X_i \sim Bin(k, p)$.

5. Let U_1, U_2, \ldots, U_n be independent and identically distributed random variables each having a uniform distribution on (0,1). Let

$$X = \min\{U_1, U_2, \dots, U_n\}, \qquad Y = \max\{U_1, U_2, \dots, U_n\}.$$

Evaluate $\mathbb{E}\left[X|Y=y\right]$ and $\mathbb{E}\left[Y|X=x\right]$.

- 6. Suppose individuals are classified into three categories C_1 , C_2 and C_3 . Let p^2 , $(1-p)^2$ and 2p(1-p) be the respective population proportions, where $p \in (0,1)$. A random sample of N individuals is selected from the population and the category of each selected individual recorded. For i = 1, 2, 3, let X_i denote the number of individuals in the sample belonging to category C_i . Define $U = X_1 + \frac{X_3}{2}$.
 - (a) Is U sufficient for p? Justify your answer.
 - (b) Show that the mean squared error of $\frac{U}{N}$ is $\frac{p(1-p)}{2N}$.
- 7. Consider the following model:

$$y_i = \beta x_i + \varepsilon_i x_i, \quad i = 1, 2, \dots, n,$$

where $y_i, i = 1, 2, ..., n$ are observed; $x_i, i = 1, 2, ..., n$ are known positive constants and β is an unknown parameter. The errors $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ are independent and identically distributed random variables having the probability density function

$$f(u) = \frac{1}{2\lambda} \exp\left(-\frac{|u|}{\lambda}\right), -\infty < u < \infty,$$

and λ is an unknown parameter.

- (a) Find the least squares estimator of β .
- (b) Find the maximum likelihood estimator of β .

8. Assume that X_1, \ldots, X_n is a random sample from $N(\mu, 1)$, with $\mu \in \mathbb{R}$. We want to test $H_0: \mu = 0$ against $H_1: \mu = 1$. For a fixed integer $m \in \{1, \ldots, n\}$, the following statistics are defined:

$$T_1 = (X_1 + \dots + X_m)/m,$$

 $T_2 = (X_2 + \dots + X_{m+1})/m,$
 $\vdots = \vdots$
 $T_{n-m+1} = (X_{n-m+1} + \dots + X_n)/m.$

Fix $\alpha \in (0,1)$. Consider the test

reject
$$H_0$$
 if $\max \{T_i : 1 \le i \le n - m + 1\} > c_{m,\alpha}$.

Find a choice of $c_{m,\alpha} \in \mathbb{R}$ in terms of the standard normal distribution function Φ that ensures that the size of the test is at most α .

- 9. A finite population has N units, with x_i being the value associated with the ith unit, i = 1, 2, ..., N. Let \bar{x}_N be the population mean. A statistician carries out the following experiment.
 - Step 1: Draw a SRSWOR of size $n \ (< N)$ from the population. Call this sample S_1 and denote the sample mean by \bar{X}_n .
 - Step 2: Draw a SRSWR of size m from S_1 . The x-values of the sampled units are denoted by $\{Y_1, \ldots, Y_m\}$.

An estimator of the population mean is defined as,

$$\widehat{T}_m = \frac{1}{m} \sum_{i=1}^m Y_i.$$

- (a) Show that \hat{T}_m is an unbiased estimator of the population mean.
- (b) Which of the following has lower variance: \hat{T}_m or \bar{X}_n ?