GROUP A

1. Let $f(x)=x^{2}-2 x+2$. Let L_{1} and L_{2} be the tangents to its graph at $x=0$ and $x=2$ respectively. Find the area of the region enclosed by the graph of f and the two lines L_{1} and L_{2}.
2. Find the number of 3×3 matrices A such that the entries of A belong to the set \mathbb{Z} of all integers, and such that the trace of $A^{t} A$ is 6 .
(A^{t} denotes the transpose of the matrix A).
3. Consider n independent and identically distributed positive random variables $X_{1}, X_{2}, \ldots, X_{n}$. Suppose S is a fixed subset of $\{1,2, \ldots, n\}$ consisting of k distinct elements where $1 \leq k<n$.
(a) Compute

$$
\mathbb{E}\left[\frac{\sum_{i \in S} X_{i}}{\sum_{i=1}^{n} X_{i}}\right]
$$

(b) Assume that X_{i} 's have mean μ and variance $\sigma^{2}, 0<\sigma^{2}<\infty$. If $j \notin S$, show that the correlation between $\left(\sum_{i \in S} X_{i}\right) X_{j}$ and $\sum_{i \in S} X_{i}$ lies between $-\frac{1}{\sqrt{k+1}}$ and $\frac{1}{\sqrt{k+1}}$.

GROUP B

4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed random variables. Let $S_{n}=X_{1}+\cdots+X_{n}$. For each of the following statements, determine whether they are true or false. Give reasons in each case.
(a) If $S_{n} \sim E x p$ with mean n, then each $X_{i} \sim \operatorname{Exp}$ with mean 1 .
(b) If $S_{n} \sim \operatorname{Bin}(n k, p)$, then each $X_{i} \sim \operatorname{Bin}(k, p)$.
5. Let $U_{1}, U_{2}, \ldots, U_{n}$ be independent and identically distributed random variables each having a uniform distribution on $(0,1)$. Let

$$
X=\min \left\{U_{1}, U_{2}, \ldots, U_{n}\right\}, \quad Y=\max \left\{U_{1}, U_{2}, \ldots, U_{n}\right\}
$$

Evaluate $\mathbb{E}[X \mid Y=y]$ and $\mathbb{E}[Y \mid X=x]$.
6. Suppose individuals are classified into three categories C_{1}, C_{2} and C_{3}. Let $p^{2},(1-p)^{2}$ and $2 p(1-p)$ be the respective population proportions, where $p \in(0,1)$. A random sample of N individuals is selected from the population and the category of each selected individual recorded. For $i=1,2,3$, let X_{i} denote the number of individuals in the sample belonging to category C_{i}. Define $U=X_{1}+\frac{X_{3}}{2}$.
(a) Is U sufficient for p ? Justify your answer.
(b) Show that the mean squared error of $\frac{U}{N}$ is $\frac{p(1-p)}{2 N}$.
7. Consider the following model:

$$
y_{i}=\beta x_{i}+\varepsilon_{i} x_{i}, \quad i=1,2, \ldots, n,
$$

where $y_{i}, i=1,2, \ldots, n$ are observed; $x_{i}, i=1,2, \ldots, n$ are known positive constants and β is an unknown parameter. The errors $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are independent and identically distributed random variables having the probability density function

$$
f(u)=\frac{1}{2 \lambda} \exp \left(-\frac{|u|}{\lambda}\right), \quad-\infty<u<\infty,
$$

and λ is an unknown parameter.
(a) Find the least squares estimator of β.
(b) Find the maximum likelihood estimator of β.
8. Assume that X_{1}, \ldots, X_{n} is a random sample from $N(\mu, 1)$, with $\mu \in \mathbb{R}$. We want to test $H_{0}: \mu=0$ against $H_{1}: \mu=1$. For a fixed integer $m \in\{1, \ldots, n\}$, the following statistics are defined:

$$
\begin{aligned}
T_{1} & =\left(X_{1}+\ldots+X_{m}\right) / m, \\
T_{2} & =\left(X_{2}+\ldots+X_{m+1}\right) / m, \\
\vdots & =\quad \vdots \\
T_{n-m+1} & =\left(X_{n-m+1}+\ldots+X_{n}\right) / m .
\end{aligned}
$$

Fix $\alpha \in(0,1)$. Consider the test

$$
\text { reject } H_{0} \quad \text { if } \quad \max \left\{T_{i}: 1 \leq i \leq n-m+1\right\}>c_{m, \alpha} .
$$

Find a choice of $c_{m, \alpha} \in \mathbb{R}$ in terms of the standard normal distribution function Φ that ensures that the size of the test is at most α.
9. A finite population has N units, with x_{i} being the value associated with the i th unit, $i=1,2, \ldots, N$. Let \bar{x}_{N} be the population mean. A statistician carries out the following experiment.

- Step 1: Draw a SRSWOR of size $n(<N)$ from the population. Call this sample S_{1} and denote the sample mean by \bar{X}_{n}.
- Step 2: Draw a SRSWR of size m from S_{1}. The x-values of the sampled units are denoted by $\left\{Y_{1}, \ldots, Y_{m}\right\}$.

An estimator of the population mean is defined as,

$$
\widehat{T}_{m}=\frac{1}{m} \sum_{i=1}^{m} Y_{i}
$$

(a) Show that \widehat{T}_{m} is an unbiased estimator of the population mean.
(b) Which of the following has lower variance: \widehat{T}_{m} or \bar{X}_{n} ?

