Notations: The set of integers $\{\cdots,-2,-1,0,1,2 \cdots\}$ is denoted by \mathbb{Z}. The set of real numbers is denoted by \mathbb{R}.

1. There are three cities each of which has exactly the same number of citizens, say n. Every citizen in each city has exactly a total of $n+1$ friends in the other two cities. Show that there exist three people, one from each city, such that they are friends. We assume that friendship is mutual (that is, a symmetric relation).
2. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function satisfying $f(0) \neq 0=f(1)$. Assume also that f satisfies equations (A) and (B) below.

$$
\begin{align*}
f(x y) & =f(x)+f(y)-f(x) f(y) \tag{A}\\
f(x-y) f(x) f(y) & =f(0) f(x) f(y) \tag{B}
\end{align*}
$$

for all integers x, y.
(i) Determine explicitly the set $\{f(a): a \in \mathbb{Z}\}$.
(ii) Assuming that there is a non-zero integer a such that $f(a) \neq 0$, prove that the set $\{b: f(b) \neq 0\}$ is infinite.
3. Prove that every positive rational number can be expressed uniquely as a finite sum of the form

$$
a_{1}+\frac{a_{2}}{2!}+\frac{a_{3}}{3!}+\cdots+\frac{a_{n}}{n!},
$$

where a_{n} are integers such that $0 \leq a_{n} \leq n-1$ for all $n>1$.
4. Let $g:(0, \infty) \rightarrow(0, \infty)$ be a differentiable function whose derivative is continuous, and such that $g(g(x))=x$ for all $x>0$. If g is not the identity function, prove that g must be strictly decreasing.
5. Let $a_{0}, a_{1}, \cdots, a_{19} \in \mathbb{R}$ and

$$
P(x)=x^{20}+\sum_{i=0}^{19} a_{i} x^{i}, \quad x \in \mathbb{R} .
$$

If $P(x)=P(-x)$ for all $x \in \mathbb{R}$, and

$$
P(k)=k^{2}, \text { for } k=0,1,2 \cdots, 9,
$$

then find

$$
\lim _{x \rightarrow 0} \frac{P(x)}{\sin ^{2} x}
$$

6. If a given equilateral triangle Δ of side length a lies in the union of five equilateral triangles of side length b, show that there exist four equilateral triangles of side length b whose union contains Δ.
7. Let a, b, c be three real numbers which are roots of a cubic polynomial, and satisfy $a+b+c=6$ and $a b+b c+a c=9$. Suppose $a<b<c$. Show that

$$
0<a<1<b<3<c<4 .
$$

8. A pond has been dug at the Indian Statistical Institute as an inverted truncated pyramid with a square base (see figure below). The depth of the pond is 6 m . The square at the bottom has side length 2 m and the top square has side length 8 m . Water is filled in at a rate of $\frac{19}{3}$ cubic meters per hour. At what rate is the water level rising exactly 1 hour after the water started to fill the pond?

