Group A

1. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f(x)= \begin{cases}\cos (2 x) & \text { if } x \text { is rational } \\ \sin ^{2}(x) & \text { if } x \text { is irrational }\end{cases}
$$

Find all the real numbers where
(a) f is continuous,
(b) f is differentiable.
2. Consider the matrix

$$
\mathbf{P}=\left(\begin{array}{ll}
5 & 3 \\
3 & 2 \\
8 & 5
\end{array}\right)_{3 \times 2} .
$$

Find a matrix \mathbf{G} such that $\mathbf{A G A}=\mathbf{A}$ where $\mathbf{A}=\mathbf{P P}^{\mathrm{T}}$.
3. Consider the set of all five digit integers formed by permuting the digits $1,2,4,6$ and 7 . Let X denote a randomly chosen integer from this set and let Y denote the position, from the right, of the digit 4 in the randomly chosen integer. For example, if the integer chosen is 12647, then Y is 2 and for $41276, Y$ is 5.
(a) Find $E(X)$ and $E(Y)$.
(b) Find $E[X \mid Y=y]$ for all possible values of y.
(c) Show that X and Y are uncorrelated but not independent.

Group B

4. Let U_{1}, U_{2}, U_{3} be i.i.d. random variables which are uniformly distributed on $(0,1)$. Let $X=\min \left(U_{1}, U_{2}\right)$ and $Y=\max \left(U_{2}, U_{3}\right)$.
(a) Find $P(X \leq x, Y \leq y)$ for all $x, y \in \mathbb{R}$.
(b) Find $P(X=Y)$.
(c) Find $E\left[X I_{\{X=Y\}}\right]$ where I_{A} is the indicator function of A.
5. Consider a game with six states $1,2,3,4,5,6$. Initially a player starts either in state 1 or in state 6 . At each step the player jumps from one state to another as per the following rules.

A perfectly balanced die is tossed at each step.
(i) When the player is in state 1 or 6 : If the roll of the die results in k then the player moves to state k, for $k=1, \ldots, 6$.
(ii) When the player is in state 2 or 3: If the roll of the die results in 1,2 or 3 then the player moves to state 4 . Otherwise the player moves to state 5 .
(iii) When the player is in state 4 or 5 : If the roll of the die results in 4,5 or 6 then the player moves to state 2 . Otherwise the player moves to state 3 .

The player wins when s/he visits 2 more states, besides the starting one.
(a) Calculate the probability that the player will eventually move out of states 1 and 6 .
(b) Calculate the expected time the player will remain within states 1 and 6.
(c) Calculate the expected time for a player to win, i.e., to visit 2 more states, besides the starting one.
6. Let X_{1}, \ldots, X_{n} be i.i.d. random variables which are uniformly distributed on $(\theta, 2 \theta), \theta>0$.
(a) Show that $\frac{X_{(n)}}{2}$ is the maximum likelihood estimator (MLE) of θ where $X_{(n)}=\max \left(X_{1}, \ldots, X_{n}\right)$.
(b) Find an unbiased estimator for θ based on the MLE.
(c) Given any $\epsilon>0$, show that

$$
\lim _{n \rightarrow \infty} P\left(\left|\frac{X_{(n)}}{2}-\theta\right|>\epsilon\right)=0
$$

7. There are two urns each contains N balls numbered from 1 to N. From each urn a sample of size n is selected without replacement. Denote the set of numbers appearing in the first and second samples by $s_{1}=\left\{i_{1}, \ldots, i_{n}\right\}$ and $s_{2}=\left\{j_{1}, \ldots, j_{n}\right\}$ respectively. Let

$$
X=\left|s_{1} \cap s_{2}\right|=\text { number of common elements in } s_{1} \text { and } s_{2} .
$$

(a) Find the probability distribution of X.
(b) Suppose $n=6$ and the observed value of X is 4 . Obtain a method of moments estimate of N.
8. Let X_{1}, X_{2}, X_{3} be i.i.d. random variables from $N\left(\mu, \sigma^{2}\right)$. Let

$$
\bar{X}=\frac{1}{3} \sum_{i=1}^{3} X_{i}, \quad T_{1}=\sum_{i=1}^{3} X_{i}^{2}, \quad T_{2}=\frac{1}{3} \sum_{i=1}^{3}\left(X_{i}-\bar{X}\right)^{2} .
$$

(a) Compute $E\left[T_{1} \mid \bar{X}\right]$ and $E\left[T_{1} \mid T_{2}\right]$
(b) Obtain the exact critical region of a level $\alpha(0<\alpha<1)$ test for $H_{0}: \mu=0$ vs $H_{1}: \mu \neq 0$ that rejects H_{0} if and only if $\frac{\bar{X}^{2}}{T_{1}}$ is sufficiently large.
9. Consider a linear regression model:

$$
y_{i}=\alpha+\beta x_{i}+e_{i}, \quad i=1,2, \ldots, n
$$

where x_{i} 's are fixed and e_{i} 's are i.i.d. random errors with mean 0 and variance σ^{2}.

Define two estimators of β as follows

$$
\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} x_{i}} \quad \text { and } \quad \widehat{\beta}_{2}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}} .
$$

(a) Obtain an unbiased estimator of β as a linear combination of $\widehat{\beta}_{1}$ and $\widehat{\beta}_{2}$.
(b) Find mean squared errors of $\widehat{\beta}_{1}$ and $\widehat{\beta}_{2}$. Which, between $\widehat{\beta}_{1}$ and $\widehat{\beta}_{2}$, has lower mean squared error?

