GROUP A

1. Find all real solutions $\left(x_{1}, x_{2}, x_{3}, \lambda\right)$ for the system of equations

$$
\begin{aligned}
x_{2}-3 x_{3}-x_{1} \lambda & =0, \\
x_{1}-3 x_{3}-x_{2} \lambda & =0, \\
x_{1}+x_{2}+x_{3} \lambda & =0 .
\end{aligned}
$$

2. Let $\left\{x_{n}\right\}_{n \geq 1}$ be a sequence defined by $x_{1}=1$ and

$$
x_{n+1}=\left(x_{n}^{3}+\frac{1}{n(n+1)(n+2)}\right)^{1 / 3}, \quad n \geq 1 .
$$

Show that $\left\{x_{n}\right\}_{n \geq 1}$ converges and find its limit.
3. Consider all permutations of the integers $1,2, \ldots, 100$. In how many of these permutations will the 25 th number be the minimum of the first 25 numbers and the 50th number be the minimum of the first 50 numbers?

GROUP B

4. An urn contains $r>0$ red balls and $b>0$ black balls. A ball is drawn at random from the urn, its colour noted, and returned to the urn. Further, $c>0$ additional balls of the same colour are added to the urn. This process of drawing a ball and adding c balls of the same colour is continued. Define $X_{i}=1$ if at the i-th draw the colour of the ball drawn is red, and 0 otherwise. Compute $\mathrm{E}\left(\sum_{i=1}^{n} X_{i}\right)$.
5. Suppose X_{1} and X_{2} are identically distributed random variables, not necessarily independent, taking values in $\{1,2\}$. If $\mathrm{E}\left(X_{1} X_{2}\right)=7 / 3$ and $\mathrm{E}\left(X_{1}\right)=3 / 2$, obtain the joint distribution of $\left(X_{1}, X_{2}\right)$.
6. A fair 6 -sided die is rolled repeatedly until a 6 is obtained. Find the expected number of rolls conditioned on the event that none of the rolls yielded an odd number.
7. Suppose $\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$ is a random sample from a bivariate normal distribution with $\mathrm{E}\left(X_{i}\right)=\mathrm{E}\left(Y_{i}\right)=0, \operatorname{Var}\left(X_{i}\right)=\operatorname{Var}\left(Y_{i}\right)=1$ and unknown $\operatorname{Corr}\left(X_{i}, Y_{i}\right)=\rho \in(-1,1)$, for all $i=1, \ldots, n$. Define $W_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}$.
(a) Is W_{n} an unbiased estimator of ρ ? Justify your answer.
(b) For large n, obtain an approximate level $(1-\alpha)$ two-sided confidence interval for ρ, where $0<\alpha<1$.
8. Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be an i.i.d. sample from $f(x: \theta), \theta \in\{0,1\}$, with $f(x: 0)=\left\{\begin{array}{ll}1 & \text { if } 0<x<1, \\ 0 & \text { otherwise },\end{array} \quad\right.$ and $\quad f(x: 1)= \begin{cases}\frac{1}{2 \sqrt{x}} & \text { if } 0<x<1, \\ 0 & \text { otherwise } .\end{cases}$

Based on the above sample, obtain the most powerful test for testing $H_{0}: \theta=0$ against $H_{1}: \theta=1$, at level α, with $0<\alpha<1$. Find the critical region in terms of the quantiles of a standard distribution.
9. Suppose $\left(y_{i}, x_{i}\right)$ satisfies the regression model,

$$
y_{i}=\alpha+\beta x_{i}+\epsilon_{i}, \quad \text { for } i=1, \ldots, n,
$$

where $\left\{x_{i}: 1 \leq i \leq n\right\}$ are fixed constants and $\left\{\epsilon_{i}: 1 \leq i \leq n\right\}$ are i.i.d. $N\left(0, \sigma^{2}\right)$ errors, where α, β and $\sigma^{2}(>0)$ are unknown parameters.
(a) Let $\widetilde{\alpha}$ denote the least squares estimate of α obtained assuming $\beta=5$. Find the mean squared error (MSE) of $\widetilde{\alpha}$ in terms of the model parameters.
(b) Obtain the maximum likelihood estimator of this MSE.

