UGB

2019

Notation.

\mathbb{R} denotes the set of all real numbers.
\mathbb{C} denotes the set of all complex numbers.

1. Prove that the positive integers n that cannot be written as a sum of r consecutive positive integers, with $r>1$, are of the form $n=2^{l}$ for some $l \geq 0$.
2. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\lim _{n \rightarrow \infty} \cos ^{n}\left(\frac{1}{n^{x}}\right) .
$$

(a) Show that f has exactly one point of discontinuity.
(b) Evaluate f at its point of discontinuity.
3. Let $\Omega=\{z=x+i y \in \mathbb{C}:|y| \leq 1\}$. If $f(z)=z^{2}+2$, then draw a sketch of

$$
f(\Omega)=\{f(z): z \in \Omega\}
$$

Justify your answer.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function such that

$$
\frac{1}{2 y} \int_{x-y}^{x+y} f(t) d t=f(x), \quad \text { for all } x \in \mathbb{R}, y>0
$$

Show that there exist $a, b \in \mathbb{R}$ such that $f(x)=a x+b$ for all $x \in \mathbb{R}$.
5. A subset S of the plane is called convex if given any two points x and y in S, the line segment joining x and y is contained in S. A quadrilateral is called convex if the region enclosed by the edges of the quadrilateral is a convex set.
Show that given a convex quadrilateral Q of area 1 , there is a rectangle R of area 2 such that Q can be drawn inside R.
6. For all natural numbers n, let

$$
A_{n}=\sqrt{2-\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}} \text { (} n \text { many radicals). }
$$

(a) Show that for $n \geq 2$,

$$
A_{n}=2 \sin \frac{\pi}{2^{n+1}}
$$

(b) Hence, or otherwise, evaluate the limit

$$
\lim _{n \rightarrow \infty} 2^{n} A_{n}
$$

7. Let f be a polynomial with integer coefficients. Define

$$
a_{1}=f(0), a_{2}=f\left(a_{1}\right)=f(f(0))
$$

and

$$
a_{n}=f\left(a_{n-1}\right) \quad \text { for } n \geq 3
$$

If there exists a natural number $k \geq 3$ such that $a_{k}=0$, then prove that either $a_{1}=0$ or $a_{2}=0$.
8. Consider the following subsets of the plane:

$$
C_{1}=\left\{(x, y): x>0, y=\frac{1}{x}\right\}
$$

and

$$
C_{2}=\left\{(x, y): x<0, y=-1+\frac{1}{x}\right\} .
$$

Given any two points $P=(x, y)$ and $Q=(u, v)$ of the plane, their distance $d(P, Q)$ is defined by

$$
d(P, Q)=\sqrt{(x-u)^{2}+(y-v)^{2}}
$$

Show that there exists a unique choice of points $P_{0} \in C_{1}$ and $Q_{0} \in C_{2}$ such that

$$
d\left(P_{0}, Q_{0}\right) \leq d(P, Q) \quad \text { for all } P \in C_{1} \text { and } Q \in C_{2}
$$

