	Blue, of 4 officers each are to be formed randomly. What is the probability that the twins would be together in the Red team?
	(A) $\frac{1}{6}$ (B) $\frac{3}{7}$ (C) $\frac{1}{4}$ (D) $\frac{3}{14}$
3.	Suppose Roger has 4 identical green tennis balls and 5 identical red tennis balls. In how many ways can Roger arrange these 9 balls in a line so that no two green balls are next to each other and no three red balls are together?
	(A) 8 (B) 9 (C) 11 (D) 12
4.	The number of permutations σ of $1,2,3,4$ such that $ \sigma(i)-i <2$ for every $1\leq i\leq 4$ is
	(A) 2 (B) 3 (C) 4 (D) 5.
5.	Let $f(x)$ be a degree 4 polynomial with real coefficients. Let z be the number of real zeroes of f , and e be the number of local extrema (i.e., local maxima or minima) of f . Which of the following is a possible (z,e) pair?
	(A) $(4,4)$ (B) $(3,3)$ (C) $(2,2)$ (D) $(0,0)$
6.	A number is called a palindrome if it reads the same backward or forward. For example, 112211 is a palindrome. How many 6-digit palindromes are divisible by $495?$
	(A) 10 (B) 11 (C) 30 (D) 45
	1

1. Let $0 < x < \frac{1}{6}$ be a real number. When a certain biased dice is rolled, a particular face F occurs with probability $\frac{1}{6} - x$ and and its opposite face occurs with probability $\frac{1}{6} + x$; the other four faces occur with probability $\frac{1}{6}$. Recall that opposite faces sum to 7 in any dice. Assume that the probability of obtaining the sum 7 when two such dice are rolled is $\frac{13}{96}$.

2. An office has 8 officers including two who are twins. Two teams, Red and

Then, the value of x is:

(A) $\frac{1}{8}$ (B) $\frac{1}{12}$ (C) $\frac{1}{24}$ (D) $\frac{1}{27}$.

	8. Consider the real-valued function $h:\{0,1,2,\ldots,100\}\to\mathbb{R}$ such that $h(0)=5,h(100)=20$ and satisfying $h(i)=\frac{1}{2}(h(i+1)+h(i-1))$, for every $i=1,2,\ldots,99$. Then, the value of $h(1)$ is:
	(A) 5.15 (B) 5.5 (C) 6 (D) 6.15.
	9. An up-right path is a sequence of points $\mathbf{a}_0=(x_0,y_0)$, $\mathbf{a}_1=(x_1,y_1)$, $\mathbf{a}_2=(x_2,y_2),\ldots$ such that $\mathbf{a}_{i+1}-\mathbf{a}_i$ is either $(1,0)$ or $(0,1)$. The number of up-right paths from $(0,0)$ to $(100,100)$ which pass through $(1,2)$ is:
	(A) $3 \cdot \binom{197}{99}$ (B) $3 \cdot \binom{100}{50}$ (C) $2 \cdot \binom{197}{98}$ (D) $3 \cdot \binom{197}{100}$.
	10. Let $f(x) = \frac{1}{2}x\sin x - (1-\cos x)$. The smallest positive integer k such that $\lim_{x\to 0}\frac{f(x)}{x^k}\neq 0$ is:
	(A) 3 (B) 4 (C) 5 (D) 6.
	11. Nine students in a class gave a test for 50 marks. Let $S_1 \leq S_2 \leq \cdots \leq S_5 \leq \cdots \leq S_8 \leq S_9$ denote their ordered scores. Given that $S_1 = 20$ and $\sum_{i=1}^9 S_i = 250$, let m be the smallest value that S_5 can take and M be the largest value that S_5 can take. Then the pair (m,M) is given by (A) $(20,35)$ (B) $(20,34)$ (C) $(25,34)$ (D) $(25,50)$.
	12. Let 10 red balls and 10 white balls be arranged in a straight line such that 10 each are on either side of a central mark. The number of such symmetrical arrangements about the central mark is (A) $\frac{10!}{5! 5!}$ (B) $10!$ (C) $\frac{10!}{5!}$ (D) $2 \cdot 10!$
:	13. If $z=x+iy$ is a complex number such that $\left \frac{z-i}{z+i}\right <1$, then we must have
	(A) $x > 0$ (B) $x < 0$ (C) $y > 0$ (D) $y < 0$.

7. Let A be a square matrix of real numbers such that $A^4=A$. Which of

(D) $A^2 + A + I = 0$ where I denotes the identity matrix.

the following is true for every such A?

(A) $\det(A) \neq -1$

(B) A must be invertible.(C) A can not be invertible.

(A) s^2 (B) $2a(s-a)$ (C) $\frac{s^2}{2}$ (D) $\frac{5}{2}a(s-a)$.	
7. The number of pairs of integers (x,y) satisfying the equation $xy(x+y+1)=5^{2018}+1\;\;{\rm is:}$	
(A) 0 (B) 2 (C) 1009 (D) 2018.	
8. Let $p(n)$ be the number of digits when 8^n is written in base 6 , and let $q(n)$ be the number of digits when 6^n is written in base 4 . For example, 8^2 in base 6 is 144 , hence $p(2)=3$. Then $\lim_{n\to\infty}\frac{p(n)q(n)}{n^2}$ equals:	
(A) 1 (B) $\frac{4}{3}$ (C) $\frac{3}{2}$ (D) 2.	
9. For a real number α , let S_{α} denote the set of those real numbers β that satisfy $\alpha \sin(\beta) = \beta \sin(\alpha)$. Then which of the following statements is true ?	
(A) For any α , S_{α} is an infinite set.	
(B) S_{α} is a finite set if and only if α is not an integer multiple of π .	
(C) There are infinitely many numbers α for which S_{α} is the set of all real numbers.	
(D) S_{lpha} is always finite.	

14. Let $S = \{x - y \mid x, y \text{ are real numbers with } x^2 + y^2 = 1\}$. Then the

15. In a factory, 20 workers start working on a project of packing consignments. They need exactly 5 hours to pack one consignment. Every hour 4 new workers join the existing workforce. It is mandatory to relieve a worker after 10 hours. Then the number of consignments that would be

16. Let ABCD be a rectangle with its shorter side a>0 units and perimeter 2s units. Let PQRS be any rectangle such that vertices A,B,C and D respectively lie on the lines PQ,QR,RS and SP. Then the maximum

(C) 45

area of such a rectangle PQRS in square units is given by

(C) $2\sqrt{2}$ (D) $1+\sqrt{2}$.

(D) 52.

maximum number in the set S is

(B) $\sqrt{2}$

packed in the initial 113 hours is

(B) 50

(A) 1

(A) 40

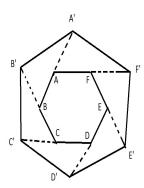
- 20. If $A=\begin{pmatrix}1&1\\0&i\end{pmatrix}$ and $A^{2018}=\begin{pmatrix}a&b\\c&d\end{pmatrix}$, then a+d equals: (A) 1+i (B) 0 (C) 2 (D) 2018.
- 21. Let $f:\mathbb{R}\to\mathbb{R}$ and $g:\mathbb{R}\to\mathbb{R}$ be two functions. Consider the following two statements:

P(1): If $\lim_{x \to 0} f(x)$ exists and $\lim_{x \to 0} f(x)g(x)$ exists, then $\lim_{x \to 0} g(x)$ must exist. **P(2)**: If f, g are differentiable with f(x) < g(x) for every real number x, then f'(x) < g'(x) for all x.

Then, which one of the following is a correct statement?

- (A) Both P(1) and P(2) are true.
- (B) Both P(1) and P(2) are false.
- (C) P(1) is true and P(2) is false.
- (D) P(1) is false and P(2) is true.
- 22. The number of solutions of the equation $\sin(7x) + \sin(3x) = 0$ with $0 \le x \le 2\pi$ is
 - (A) 9 (B) 12 (C) 15 (D) 18.
- 23. A bag contains some candies, $\frac{2}{5}$ of them are made of white chocolate and the remaining $\frac{3}{5}$ are made of dark chocolate. Out of the white chocolate candies, $\frac{1}{3}$ are wrapped in red paper, the rest are wrapped in blue paper. Out of the dark chocolate candies, $\frac{2}{3}$ are wrapped in red paper, the rest are wrapped in blue paper. If a randomly selected candy from the bag is found to be wrapped in red paper, then what is the probability that it is made up of dark chocolate?
 - (A) $\frac{2}{3}$ (B) $\frac{3}{4}$ (C) $\frac{3}{5}$ (D) $\frac{1}{4}$
- 24. A party is attended by twenty people. In any subset of four people, there is at least one person who knows the other three (we assume that if X knows Y, then Y knows X). Suppose there are three people in the party who do not know each other. How many people in the party know everyone?
 - (A) 16 (B) 17 (C) 18
 - (D) Cannot be determined from the given data.
- 25. The sum of all natural numbers a such that $a^2-16a+67$ is a perfect square is:
 - (A) 10 (B) 12 (C) 16 (D) 22.

26. The sides of a regular hexagon ABCDEF are extended by doubling them (for example, BA extends to BA' with BA' = 2BA) to form a bigger regular hexagon $A^{\prime}B^{\prime}C^{\prime}D^{\prime}E^{\prime}F^{\prime}$ as in the figure.



Then, the ratio of the areas of the bigger to the smaller hexagon is:

- (A) 2
- (B) 3 (C) $2\sqrt{3}$ (D) π .
- 27. Between 12 noon and 1 PM, there are two instants when the hour hand and the minute hand of a clock are at right angles. The difference in minutes between these two instants is:

- (A) $32\frac{8}{11}$ (B) $30\frac{8}{11}$ (C) $32\frac{5}{11}$ (D) $30\frac{5}{11}$.
- 28. For which values of θ , with $0 < \theta < \pi/2$, does the quadratic polynomial in t given by $t^2 + 4t\cos\theta + \cot\theta$ have repeated roots?

- (A) $\frac{\pi}{6}$ or $\frac{5\pi}{18}$ (B) $\frac{\pi}{6}$ or $\frac{5\pi}{12}$ (C) $\frac{\pi}{12}$ or $\frac{5\pi}{18}$ (D) $\frac{\pi}{12}$ or $\frac{5\pi}{12}$
- 29. Let α, β, γ be complex numbers which are the vertices of an equilateral triangle. Then, we must have:

- (A) $\alpha+\beta+\gamma=0$ (B) $\alpha^2+\beta^2+\gamma^2=0$ (C) $\alpha^2+\beta^2+\gamma^2+\alpha\beta+\beta\gamma+\gamma\alpha=0$ (D) $(\alpha-\beta)^2+(\beta-\gamma)^2+(\gamma-\alpha)^2=0$
- 30. Assume that n copies of unit cubes are glued together side by side to form a rectangular solid block. If the number of unit cubes that are completely invisible is 30, then the minimum possible value of n is:
 - (A) 204
- (B) 180
- (C) 140
- (D) 84.